Publications

Forthcoming
Dennis E. Brookner and Doeke R. Hekstra. Forthcoming. “MatchMaps: Non-isomorphous difference maps for X-ray crystallography.” bioRxiv. Publisher's VersionAbstract
Conformational change mediates the biological functions of proteins. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands, and time. The isomorphous difference map remains the gold standard for detecting structural differences between datasets. Isomorphous difference maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even minute changes in unit cell dimensions can render isomorphous difference maps useless. This is unnecessary. Here we describe a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. We have implemented this procedure in an open-source python package, MatchMaps, that can be run in any software environment supporting PHENIX and CCP4. Through examples, we show that MatchMaps “rescues” observed difference electron density maps for near-isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit, or across altogether different crystal forms.Competing Interest StatementThe authors have declared no competing interest.
Jack B. Greisman, Kevin M. Dalton, Dennis E. Brookner, Margaret A. Klureza, Candice J. Sheehan, In-Sik Kim, Robert W. Henning, Silvia Russi, and Doeke R. Hekstra. Forthcoming. “Resolving conformational changes that mediate a two-step catalytic mechanism in a model enzyme.” bioRxiv. Publisher's VersionAbstract
Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydro-folate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR. We identify a global hinge motion and local networks of structural rearrangements that are engaged by substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mechanism shows that DHFR’s two-step catalytic mechanism is guided by a dynamic free energy landscape responsive to the state of the substrate.Competing Interest StatementThe authors have declared no competing interest.
2022
Kevin M Dalton, Jack B Greisman, and Doeke R Hekstra. 12/15/2022. “A unifying Bayesian framework for merging X-ray diffraction data.” Nature Communications, 13. View onlineAbstract
Novel X-ray methods are transforming the study of the functional dynamics of biomolecules. Key to this revolution is detection of often subtle conformational changes from diffraction data. Diffraction data contain patterns of bright spots known as reflections. To compute the electron density of a molecule, the intensity of each reflection must be estimated, and redundant observations reduced to consensus intensities. Systematic effects, however, lead to the measurement of equivalent reflections on different scales, corrupting observation of changes in electron density. Here, we present a modern Bayesian solution to this problem, which uses deep learning and variational inference to simultaneously rescale and merge reflection observations. We successfully apply this method to monochromatic and polychromatic single-crystal diffraction data, as well as serial femtosecond crystallography data. We find that this approach is applicable to the analysis of many types of diffraction experiments, while accurately and sensitively detecting subtle dynamics and anomalous scattering.
Jack B. Greisman, Kevin M. Dalton, Candice J. Sheehan, Margaret A. Klureza, Igor Kurinov, and Doeke R. Hekstra. 7/27/2022. “Native SAD phasing at room temperature.” Acta Crystallographica Section D, 78, 8. View onlineAbstract
Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, a strategy is presented to obtain high-quality data from room-temperature, single-crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature.
2022greisman_actad.pdf
2021
Jack B Greisman, Kevin M Dalton, and Doeke R Hekstra. 10/2021. “reciprocalspaceship: a Python library for crystallographic data analysis.” Journal of Applied Crystallography, 54, 5. View onlineAbstract
Crystallography uses the diffraction of X-rays, electrons or neutrons by crystals to provide invaluable data on the atomic structure of matter, from single atoms to ribosomes. Much of crystallography's success is due to the software packages developed to enable automated processing of diffraction data. However, the analysis of unconventional diffraction experiments can still pose significant challenges – many existing programs are closed source, sparsely documented, or challenging to integrate with modern libraries for scientific computing and machine learning. Described here is reciprocalspaceship, a Python library for exploring reciprocal space. It provides a tabular representation for reflection data from diffraction experiments that extends the widely used pandas library with built-in methods for handling space groups, unit cells and symmetry-based operations. As is illustrated, this library facilitates new modes of exploratory data analysis while supporting the prototyping, development and release of new methods.
Greisman_et_al_2021.pdf